ARYLAZO GROUP EXCHANGE IN THE REACTION OF 5-ARYLAZOTROPOLONES WITH ARYLDIAZONIUM SALTS

Tsutomu IDE, Kimiaki IMAFUKU, and Hisashi MATSUMURA Department of Chemistry, Faculty of Science, Kumamoto University, Kurokami, Kumamoto 860

5-Phenylazo-, 5-(p-tolylazo)-, and 5-(p-methoxyphenylazo)-tropolones reacted with aryldiazonium salts to give products which derived from arylazo group exchange at the C-5 position of the tropolone ring.

Tropolones having no substituents at the C-5 position of the tropolone ring have been reported to form nicely crystalline dyes by the diazo-coupling reaction. On the other hand, little is known about the reaction of 5-substituted tropolones with aryldiazonium salts except the following fact: Toda et al. Preported that a tropolone substituted at the C-5 position with chlorine, isopropyl, methoxyl, or phenyl group was treated with an aryldiazonium chloride to afford the corresponding 3-arylazotropolones. In the course of our work to clarify the reaction of 5-substituted tropolones with aryldiazonium salts, we found that 5-arylazotropolones react with aryldiazonium salts to give rise to arylazo group exchange reaction in aromatic compounds.

When tropolones substituted at the C-5 position with phenylazo, p-tolylazo, or p-methoxyphenylazo group were treated with aryldiazonium chloride, having electron-withdrawing groups at the para position, in pyridine at low temperature (-5 N -10 c), the arylazo group exchanged products were obtained in 55-92% yields as shown in Table 1. These products were identified by their mp's and infrared spectra in comparison with those of their authentic samples. However, when aryldiazonium salts having electron-releasing substituents were used under the same conditions, the starting 5-arylazotropolones were recovered.

Product	Yield (%) from			Mp (°C)	
	Ia	Ιb	Ic	(in ref.)	
IIa	_	#	61	160 (160-161) ³)	
IIb	83	74	82	245 (244 - 245) ⁴⁾	
IIc	92	80	86	25 3- 254 (249 - 250) ⁵⁾	
IId	60	55	70	243-244 ##	
IIe	81	90	63	243 -245 (239 - 241) ⁴⁾	
IIf	92	76	62	271 - 272 (269 - 271) ⁴⁾	
IIg	88	75	84	267-268 (249 -250) ⁶⁾	

Table 1. Yields of the Exchanged Products

A new compound gave satisfactory elemental analysis.

When substituents at the para position of arylazo group were electron-withdrawing (R^1 = Cl and COCH₃), the arylazo group exchange did not occur. This finding clearly indicates that the reaction of 5-substituted tropolones with aryldiazonium salts depends largely on the electronic effect of the substituents at the C-5 position.

The details of the diazo-coupling reaction of 5-substituted tropolones will be reported later on.

Acknowledgement. We wish to thank Dr. Tetsuo Nozoe, Professor Emeritus of Tohoku University, for his encouragement and discussion.

References

- 1) T. Nozoe, K. Takase, and H. Matsumura, "Dai Yuki Kagaku," ed. by M. Kotake, Vol. 13, Asakura Shoten (1960), p.281.
- 2) T. Toda, H. Horino, T. Mukai, and T. Nozoe, Tetrahedron Lett., 1968, 2387.
- 3) W. von E. Doering, and L. H. Knox, J. Am. Chem. Soc., 73, 828 (1951).
- 4) J. Griffiths, J. Chem. Soc. (B), 1971, 801.
- 5) T. Nozoe, K. Takase, and H. Matsumura, "Dai Yuki Kagaku," ed. by M. Kotake, Vol. 13, Asakura Shoten (1960), p. 237.
- 6) T. Nozoe, S. Seto, Y. Kitahara, M. Kunori, and Y. Nakayama, Proc. Jpn. Acad., 26(7), 38 (1950); Chem. Abstr., 45, 7098e (1951).

(Received March 7, 1977)

[#] No reaction.